首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6075篇
  免费   591篇
  国内免费   471篇
电工技术   147篇
综合类   834篇
化学工业   607篇
金属工艺   356篇
机械仪表   300篇
建筑科学   823篇
矿业工程   150篇
能源动力   111篇
轻工业   375篇
水利工程   308篇
石油天然气   220篇
武器工业   40篇
无线电   235篇
一般工业技术   715篇
冶金工业   790篇
原子能技术   36篇
自动化技术   1090篇
  2024年   16篇
  2023年   105篇
  2022年   190篇
  2021年   242篇
  2020年   211篇
  2019年   203篇
  2018年   174篇
  2017年   196篇
  2016年   203篇
  2015年   203篇
  2014年   380篇
  2013年   375篇
  2012年   359篇
  2011年   491篇
  2010年   357篇
  2009年   388篇
  2008年   389篇
  2007年   442篇
  2006年   369篇
  2005年   335篇
  2004年   305篇
  2003年   235篇
  2002年   204篇
  2001年   162篇
  2000年   107篇
  1999年   93篇
  1998年   58篇
  1997年   46篇
  1996年   48篇
  1995年   40篇
  1994年   47篇
  1993年   24篇
  1992年   17篇
  1991年   12篇
  1990年   10篇
  1989年   20篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   3篇
  1981年   3篇
  1966年   3篇
  1964年   3篇
  1961年   4篇
  1959年   3篇
  1957年   3篇
  1956年   2篇
  1951年   2篇
排序方式: 共有7137条查询结果,搜索用时 15 毫秒
31.
李翠勤  李杨  郭苏月  高宇新  李锋 《化工进展》2020,39(4):1469-1477
以二乙烯三胺和三乙烯四胺为桥联基,β-(3,5-二叔丁基-4-羟基苯基)丙酰氯为抗氧化功能基团,通过酰胺化缩合反应合成了两类具有不同对位桥联基团的受阻酚类抗氧剂。采用傅里叶红外光谱和核磁共振氢谱证实了合成的多乙烯多胺桥联受阻酚类抗氧剂的化学结构。DPPH法研究了多乙烯多胺桥联受阻酚类抗氧剂清除自由基的性能,并探索了酚羟基个数和对位桥联基结构对受阻酚类抗氧剂清除自由基性能的影响。结果表明,多乙烯多胺桥联受阻酚类抗氧剂具有良好的清除DPPH·能力,且随着抗氧剂分子中酚羟基个数的增加,清除DPPH·的活性增加,分子中含有4个酚羟基的三乙烯四胺受阻酚类抗氧剂的抗氧化效率(AE)达到2.65×10-2 L/(mol·s)。对位桥联基结构对受阻酚类抗氧剂清除DPPH·能力有较大影响,季戊四醇为桥联基的受阻酚类抗氧剂1010清除DPPH·能力最强,其抗氧化效率(AE)为3.08×10-2L/(mol·s);乙二胺为核的1.0代树枝状受阻酚类抗氧剂清除DPPH·能力最弱,其抗氧化效率(AE)为2.60×10-2 L/(mol·s)。  相似文献   
32.
During approximate 773 K aging treatment of 100Mn13 steel, degenerate pearlite will occur and evolve into lamellar pearlite during growth process. The microstructures of degenerate pearlite and its evolutionary lamellar pearlite are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that after 748 K, 773 K and 798 K aging, degenerate pearlites occur at grain boundary. At growth front of degenerate pearlite forming at 773 K and 798 K, pearlite presents a morphology of short lamellae of carbide and ferrite, indicating a trend of developing into lamellar pearlite. The higher the temperature is, the more obvious the trend is, and even a conventional lamellar pearlite has developed. However, there is no morphological evolution for degenerate pearlite forming at 748 K aging. Besides, the constituents of degenerate pearlite is identified as M23C6 and ferrite, and Kurdjumov-Sachs orientation relationship exists between them, (01 )α//( 1 )M23C6, [111]α//[110]M23C6. This orientation relationship maintains in morphological evolution from degenerate pearlite to lamellar pearlite.  相似文献   
33.
In this paper, the outflow process of a triangular broad-crested device is examined using the dimensional analysis and the incomplete self-similarity theory. A new theoretical stage-discharge relationship is proposed, and its applicability is verified using measurements available in literature.The proposed power equation is characterized by a coefficient depending on device apex angle and a constant value of the exponent.  相似文献   
34.
《Soils and Foundations》2022,62(1):101103
The present study proposes a new elasto-plastic constitutive model that considers different types of hydrates in pore spaces. Many triaxial compression tests on both methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have been carried out over the last few decades. It has been revealed that methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have different strength and dilatancy properties even though they have the same hydrate contents. The reason for this might be due to the different types of hydrate morphology. In this study, therefore, the effect of the hydrate morphology on the mechanical response of gas-hydrate-bearing sediments is investigated through a model analysis by taking into account the different hardening rules corresponding to each type of hydrate morphology. In order to evaluate the capability of the proposed model, it is applied to the results of past triaxial compression tests on both methane hydrate-containing and carbon dioxide hydrate-containing sand specimens. The model is found to successfully reproduce the different stress–strain relations and dilatancy behaviors, by only giving consideration to the different morphology distributions and not changing the fitting parameters. The model is then used to predict a possible range in which the maximum deviator stress can move for various hydrate morphology ratios; the range is defined as the strength-band. The predicted curve of the maximum deviator stress obtained by the constitutive model matches the empirical equations obtained from past experiments. It supports the fact that the hydrate morphology ratio changes with the total hydrate saturation. These findings will contribute to a better understanding of the relation between the microscopic structures and macro-mechanical behaviors of gas-hydrate-bearing sediments.  相似文献   
35.
Human Factors and Ergonomics (HFE) recognises itself as a design-driven, systemic and scientific discipline geared towards well-being and performance. Being a scientific discipline and design-oriented requires that the epistemic basis of science and design/engineering be fully comprehended. In interdisciplinary research where these two viewpoints meet, there are often dilemmas posed in terms of knowledge construction and labelling of activity. Therefore, this article scrutinises these two orientations and addresses the differences and commonalities, using case studies from engineering and psychological science (both constituents of HFE). Based on these insights, a way forward is suggested in terms of (1) a reflexive engagement with epistemic concepts and methods; (2) finding a conceptual space for balancing and bridging the science-engineering divide; (3) comprehending ‘design-thinking/design knowledge’ and not treating it as an application of science; (4) providing emphasis on problem formulation and practices of HFE focusing on developing them in systemic terms.  相似文献   
36.
This paper presents the results of experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and cohesionless sandy gravel. A series of cyclic interface shear tests was performed using a large-scale cyclic shear apparatus with servo controlled system. Particular attention was paid to the influences of the amount of shear-displacement amplitude, number of cycles, shear rate and the normal pressure on the mechanical response. The experimental results show that the path of the shear stress against the cyclic shear displacement is strongly non-linear and forms a closed hysteresis loop, which is pressure dependent, but almost independent of the shear rate. For small shear-displacement amplitudes, the obtained damping ratio is significantly greater than zero, which is different to the behavior usually observed for cyclic soil to soil shearing. In order to describe the pressure dependency of the hysteresis loop using a single set of constitutive parameters, new approximation functions are put forward and embedded into the concept of the Masing rule. Further, a new empirical function is proposed for the damping ratios to capture the experimental data for both small and large cyclic shear-displacement amplitudes. The included model parameters are easy to calibrate and the new functions may also be useful in developing enhanced constitutive models for the simulation of the cyclic interface shear behavior between other geosynthetics and soils.  相似文献   
37.
The fuel cell gas diffusion media (GDM) is a highly porous carbon-fiber-reinforced thin composite layer. The experimental response of these materials is observed to be highly nonlinear at low-stress levels. The cyclic mechanical response of GDM is investigated in terms of stiffness and damage parameters. The prediction of the state of deformation in GDM is vital in relating GDM's properties to ohmic and transport losses. To this end, a compressible form of the phenomenological model is proposed to capture the experimental cyclic response accurately. The model is constituent dependent; that is, the cumulative cyclic stress-strain response of GDM is a function of individual constituent phases present in the material. These individual constituents are porous matrix and reinforced fibers. The model hence derived for a typical GDM material, can predict residual strain, hysteresis, and damage quotient associated with the stress softening. This advanced model is implemented in the numerical domain to evaluate the response of the polymer electrolyte fuel cell (PEFC) unit cell. The stress-strain distribution fields are analyzed and compared with those of conventional GDM models. The results point to a remarkable deviation from the conventional notion of structural analysis.  相似文献   
38.
The compressive deformation of gas diffusion layer (GDL), which is highly nonlinear and related to the loading history, affects the performance of PEM fuel cell stacks. However, linear elastic models are widely used. In this study, a new nonlinear constitutive model is proposed to describe the compression properties. Macroscopic studies reveal that GDL has different mechanical properties during the first and repeated compression stages. Besides, the tangent modulus has a significant linear relationship with stress. The constitutive model can be rebuilt using the micro-mechanical theory of fiber assemblies by considering the bending of carbon fibers. Furthermore, a prediction method is proposed to describe cyclic compression behavior. The prediction results fit well with the test results with an average and maximum relative error of less than 5.30% and 18.13%, respectively. These conclusions are beneficial to the design of GDL with specific mechanical properties and the real-time analysis of PEM fuel cell.  相似文献   
39.
Substantial compressive deformation occurs in the gas diffusion layer (GDL) under the pressure applied during the fuel cell assembly. The GDL deformation has a direct impact on the efficiency and performance of the fuel cell since it leads to the alteration of the GDL microstructure and porosity. This makes the accurate characterization of the GDL compressive behavior crucial for analyzing the fuel cell performance and its optimal design. In this paper, analytical, experimental, and numerical methods have been employed to comprehensively study the constitutive law of the GDL under compression. Starting from the recently developed stress-density relations, the constitutive stress-strain equations are derived for the GDL and the relation between the stress-density and stress-strain laws are revealed. Experimental compression tests have been performed on GDL samples and the capability of the proposed constitutive law in capturing the real behavior of the material has been proved. It has been observed that the simplifying assumption of constant zero Poisson's ratio in the through-plane direction made in many previous studies cannot accurately represent the GDL material behavior and a modification is proposed. The developed constitutive law has been successfully implemented in a finite element model of the GDL-bipolar plate assembly in the fuel cell structure and the variations of the GDL porosity, density, and through-plane Young's modulus and Poisson's ratio have been investigated for different vertical displacements of the bipolar plate.  相似文献   
40.
We have investigated the scaling relationship between rheological behavior and concentration for both salt-free and saline solutions of hyaluronan (HA), and adopted three viscoelastic constitutive models to predict the linear/non-linear viscoelastic behavior of these aqueous solutions of HA with different molecular weights at different concentrations up to 20 mg/ml. A series of concentration equations are obtained to describe the influence of HA concentration on solution viscosity. Corresponding to dilute and semi-dilute concentration region, salt-free HA solutions have scaling relationship between specific viscosity and HA concentration as ηsp ∼ c1.0 and ηsp ∼ c3.5, respectively, while for 0.15 M NaCl HA solutions, the scaling exponents are 1.5 and 4.2, respectively. Simulation results indicate that these constitutive models have good applicability to describe quantitatively the rheological properties of HA entangled solutions under either dynamic or steady shear flow. In addition, the plateau modulus scaling of HA solutions can be well described by the concentration-dependent length scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号